238 research outputs found

    Synthesis of Positron Emission Tomography (PET) Images via Multi-channel Generative Adversarial Networks (GANs)

    Full text link
    Positron emission tomography (PET) image synthesis plays an important role, which can be used to boost the training data for computer aided diagnosis systems. However, existing image synthesis methods have problems in synthesizing the low resolution PET images. To address these limitations, we propose multi-channel generative adversarial networks (M-GAN) based PET image synthesis method. Different to the existing methods which rely on using low-level features, the proposed M-GAN is capable to represent the features in a high-level of semantic based on the adversarial learning concept. In addition, M-GAN enables to take the input from the annotation (label) to synthesize the high uptake regions e.g., tumors and from the computed tomography (CT) images to constrain the appearance consistency and output the synthetic PET images directly. Our results on 50 lung cancer PET-CT studies indicate that our method was much closer to the real PET images when compared with the existing methods.Comment: 9 pages, 2 figure

    Non-Hodgkin's lymphoma presenting as a primary bladder tumor: a case report

    Get PDF
    <p>Abstract</p> <p>Introduction</p> <p>Primary lymphoma of the bladder represents 0.2% of all bladder malignancies. Secondary involvement of the bladder by malignant lymphoma occurs in 10% to 50% of cases. Most lymphomas of the bladder are non-Hodgkin's lymphomas of the B-cell type, with preponderance among women. The impact of positron emission tomography (PET) on tumor staging has recently become very important due to its use in the study of diagnosis extension and individual therapy design.</p> <p>Case presentation</p> <p>We report the case of a 79-year-old Caucasian man with intermittent haematuria as the presenting symptom of non-Hodgkin's lymphoma of the bladder. He was first diagnosed with primary lymphoma of the bladder using the current staging method, but a positron emission tomography study subsequently revealed that he instead had a secondary involvement of the bladder.</p> <p>Conclusion</p> <p>The staging of non-Hodgkin's lymphomas, which is useful in order to plan accurate therapy, has been changing since the introduction of positron emission tomography scanning. Primary lymphomas of the bladder, although very rare, may be even more uncommon when this imaging technique is used to assess the extension of the disease. Although the interpretation of this technique has some limitations that should be taken into account, the extensive use of positron emission tomography should nonetheless help improve the diagnosis of this disease.</p

    124I-HuCC49deltaCH2 for TAG-72 antigen-directed positron emission tomography (PET) imaging of LS174T colon adenocarcinoma tumor implants in xenograft mice: preliminary results

    Get PDF
    <p>Abstract</p> <p>Background</p> <p><sup>18</sup>F-fluorodeoxyglucose positron emission tomography (<sup>18</sup>F-FDG-PET) is widely used in diagnostic cancer imaging. However, the use of <sup>18</sup>F-FDG in PET-based imaging is limited by its specificity and sensitivity. In contrast, anti-TAG (tumor associated glycoprotein)-72 monoclonal antibodies are highly specific for binding to a variety of adenocarcinomas, including colorectal cancer. The aim of this preliminary study was to evaluate a complimentary determining region (CDR)-grafted humanized C<sub>H</sub>2-domain-deleted anti-TAG-72 monoclonal antibody (HuCC49deltaC<sub>H</sub>2), radiolabeled with iodine-124 (<sup>124</sup>I), as an antigen-directed and cancer-specific targeting agent for PET-based imaging.</p> <p>Methods</p> <p>HuCC49deltaC<sub>H</sub>2 was radiolabeled with <sup>124</sup>I. Subcutaneous tumor implants of LS174T colon adenocarcinoma cells, which express TAG-72 antigen, were grown on athymic Nu/Nu nude mice as the xenograft model. Intravascular (i.v.) and intraperitoneal (i.p.) administration of <sup>124</sup>I-HuCC49deltaC<sub>H</sub>2 was then evaluated in this xenograft mouse model at various time points from approximately 1 hour to 24 hours after injection using microPET imaging. This was compared to i.v. injection of <sup>18</sup>F-FDG in the same xenograft mouse model using microPET imaging at 50 minutes after injection.</p> <p>Results</p> <p>At approximately 1 hour after i.v. injection, <sup>124</sup>I-HuCC49deltaC<sub>H</sub>2 was distributed within the systemic circulation, while at approximately 1 hour after i.p. injection, <sup>124</sup>I-HuCC49deltaC<sub>H</sub>2 was distributed within the peritoneal cavity. At time points from 18 hours to 24 hours after i.v. and i.p. injection, <sup>124</sup>I-HuCC49deltaC<sub>H</sub>2 demonstrated a significantly increased level of specific localization to LS174T tumor implants (p = 0.001) when compared to the 1 hour images. In contrast, approximately 50 minutes after i.v. injection, <sup>18</sup>F-FDG failed to demonstrate any increased level of specific localization to a LS174T tumor implant, but showed the propensity toward more nonspecific uptake within the heart, Harderian glands of the bony orbits of the eyes, brown fat of the posterior neck, kidneys, and bladder.</p> <p>Conclusions</p> <p>On microPET imaging, <sup>124</sup>I-HuCC49deltaC<sub>H</sub>2 demonstrates an increased level of specific localization to tumor implants of LS174T colon adenocarcinoma cells in the xenograft mouse model on delayed imaging, while <sup>18</sup>F-FDG failed to demonstrate this. The antigen-directed and cancer-specific <sup>124</sup>I-radiolabled anti-TAG-72 monoclonal antibody conjugate, <sup>124</sup>I-HuCC49deltaC<sub>H</sub>2, holds future potential for use in human clinical trials for preoperative, intraoperative, and postoperative PET-based imaging strategies, including fused-modality PET-based imaging platforms.</p

    Search for strongly interacting massive particles generating trackless jets in proton-proton collisions at s = 13 TeV

    Get PDF
    A search for dark matter in the form of strongly interacting massive particles (SIMPs) using the CMS detector at the LHC is presented. The SIMPs would be produced in pairs that manifest themselves as pairs of jets without tracks. The energy fraction of jets carried by charged particles is used as a key discriminator to suppress efficiently the large multijet background, and the remaining background is estimated directly from data. The search is performed using proton-proton collision data corresponding to an integrated luminosity of 16.1 fb - 1 , collected with the CMS detector in 2016. No significant excess of events is observed above the expected background. For the simplified dark matter model under consideration, SIMPs with masses up to 100 GeV are excluded and further sensitivity is explored towards higher masses

    Search for dark matter produced in association with a Higgs boson decaying to a pair of bottom quarks in proton-proton collisions at root s=13TeV

    Get PDF
    A search for dark matter produced in association with a Higgs boson decaying to a pair of bottom quarks is performed in proton-proton collisions at a center-of-mass energy of 13 TeV collected with the CMS detector at the LHC. The analyzed data sample corresponds to an integrated luminosity of 35.9 fb(-1). The signal is characterized by a large missing transverse momentum recoiling against a bottom quark-antiquark system that has a large Lorentz boost. The number of events observed in the data is consistent with the standard model background prediction. Results are interpreted in terms of limits both on parameters of the type-2 two-Higgs doublet model extended by an additional light pseudoscalar boson a (2HDM+a) and on parameters of a baryonic Z simplified model. The 2HDM+a model is tested experimentally for the first time. For the baryonic Z model, the presented results constitute the most stringent constraints to date.Peer reviewe
    corecore